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ABSTRACT

The growing cost of physical tests and evaluations of military systems has resulted

in increased use of computer simulations to provide decision support information. Many

such systems, such as weapons and countermeasure systems, rely on sensors. Hence, devel-

opment of widely applicable computer models for sensors is vitally important. This research

investigates the possibility of developing sensor simulations as components for use in models

with varying fidelity and purpose. Development of abstractions is emphasized to maximize

the applicability of components in a variety of modeling contexts. Concrete examples of

reusable sensor components are demonstrated in working models and a preliminary design

for a generalized modeling framework is proposed.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic errors,

they cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.
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I. INTRODUCTION

Military organizations of the world constantly develop new war fighting technology.

Advances in our own technologies produce the potential for operational and organizational

improvements that are unforeseen. However, advances in the capabilities of potential ad-

versaries present challenges that must be answered by our systems and organizations.

One area of concern is the advancement of anti-ship missile technologies available to

potential enemies of the United States. As the cost of technology drops and the availability

of technology rises, the challenges faced by our shrinking resources grows. We are faced

with an urgent need to quickly improve ship missile defenses, or at least to understand our

vulnerabilities. Research in this field is vigorous.

Because our missiles are expensive and foreign missiles are unavailable, test pro-

grams for missile defense systems are often infeasible. Even when feasible, physical testing

on a range is expensive. Consequently, the use of simulation models to support design, pro-

curement and research funding decisions is ever increasing. This increased use of simulation

to support important decisions motivates the study and construction of simulation tools

that are applicable to test and evaluation as well as to tactical development and combat

effectiveness studies.

Simulation modeling can provide decision support at all stages of a system’s devel-

opment and employment. During concept development, medium to low resolution models

can provide insight into future needs. Once needs are identified, simulation may be used

by engineers to prototype designs, and by physicists to test theoretical concepts. When

prototypes become available, the test and evaluation community can use simulation to plan

physical testing, and then to extrapolate physical test results with calibrated simulations.

When a system is selected for procurement, simulation may help define tactical concepts

prior to the system’s introduction into the inventory. Finally, when a system is employed,

a simulation is can assess the effectiveness of organizations equipped with the system. Sys-

tems are often improved during their lifecycles, and all these uses of simulation may be

repeated to develop, test and evaluate the improved system.

Rapidly increasing computer capacity and programming skill has made this scenario

possible. As computing capabilities grow, the demand for better and more complex soft-

ware grows. But high demand and limited resources have made software development an

expensive undertaking. The expense of software, such as simulation models, necessitates a

program for model and code reuse to minimize the demands placed on limited programming

resources while satisfying the growing requirements.
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In this thesis, we examine simulation support for sensor systems. After a brief

discussion of current efforts associated with the sensing models used for soft-kill missile

countermeasure system support, we develop a model for active sensor components. The

conceptual model we develop is then demonstrated in a number of contexts to evaluate the

possibility of a code reuse scheme in real projects, including countermeasure evaluations.

Finally, we discuss the supporting structure needed to make a component, such as our sensor

model, reusable on an organizational scale.

A. MISSILE COUNTERMEASURES

Missile countermeasures are divided into two broad categories. Hard-kill systems,

which aim to destroy the missile before it reaches its target, and soft-kill systems, which

attempt to confuse the missile into pursuing a false target. In practice, the two systems

interfere with each other, making them difficult to employ together.

Soft-kill countermeasure systems can be active or passive, the most common being

decoys, chaff and radar jamming devices. Chaff is well understood, but continues to be

studied in the presence of new missiles. Radar jammers are of continued interest because of

new missile radars, and because they interfere with our own sensor systems. Decoys are of

particular interest since our improving ability to manipulate radar signals can make them

highly effective.

B. CURRENT EFFORTS

The Ship’s Electronic Warfare Systems Division of the Naval Research Laboratory

(SEWS) provides simulation support for soft-kill countermeasure acquisition. SEWS has a

long history of providing support for countermeasure and radar system development and

procurement for the USN, and is home to a large body of expertise in radar engineering.

Originally, modeling efforts at SEWS supported research on the radar reflection

characteristics of existing passive missile decoys, ships and aircraft. These efforts have

provided important performance evaluations that have contributed both to design and to

the procurement process.

Recently, focus has shifted to include evaluation of countermeasure effectiveness, in-

cluding countermeasures still under design. Today, the effort is expanding towards support

of tactics development and vulnerability assessment. The shift of interest towards evalua-

tion of effectiveness, in addition to evaluation of performance, has spawned a relationship

between SEWS and the Department of Operations Research at the Naval Postgraduate

2



School. This thesis is the second1 to explore application of Operations Research techniques

to the problems being addressed at SEWS.

As we will discuss in Chapter II, these changing demands for simulation support are

a typical phenomenon encountered as a system or concept evolves. Operations Research

techniques will increase in applicability as modeling requirements move further from system

performance analysis and closer to analysis of effectiveness.

Two models are currently used for production level research at SEWS. VIEWS

[Hardenburg, 1995], a medium resolution physical model of radar was developed in the

1970’s to be a high resolution model for radar research is used directly for countermea-

sure support. C Routines Utilizing Ships Environments and Missiles (CRUISE Missile)

[Fletcher, 1996], the successor to VIEWS chronologically, is an even higher resolution phys-

ical radar system model.

CRUISE Missile the high resolution model, simulates signal processing at the level

of components on circuit boards, and simulates a ship as several thousand corner radar

reflectors. Although CRUISE Missile was developed for other purposes, it has been used

to model missile-ship engagements with chaff. A single run of a single ship, single missile

engagement requires hours to complete.

CRUISE Missile is intended to so accurately model every aspect of the real systems

that a single run is sufficient to obtain useful information. CRUISE Missile has been very

successful for its intended purpose but, as will be discussed in Chapter II, it is difficult

to extend such a model to uses other than pure engineering. Since systems are modeled

by simulating individual electrical components, the job of modeling a new missile seeker is

tantamount to building that seeker by hand, a time consuming and expensive task.

The VIEWS model is lower resolution, and after two years of renewed development

is the principle model for countermeasure analysis at NRL. VIEWS was resurrected and

modernized to fill the need for a lower resolution model for the effectiveness analyses describe

above. VIEWS is is a better candidate for extension to operational testing because of it’s

lower resolution and stylized approach to signal processing. Consequently, VIEWS is has

been ported from FORTRAN to C++ to ease development of this extension and to facilitate

more complex scenarios.

VIEWS models the target ship as several corner reflectors, and models signal pro-

cessing at the process level. Presently, VIEWS models a single ship, DDG-51, a single mis-

sile, and several countermeasures. The stylized model of signal processing used in VIEWS

facilitates modeling of additional missile seekers because it is process based; i.e., it models

1The first thesis is “Simulation of a Radar Detection Model Using the NPS Platform Foundation,” Aaron
S. Ellison, March 1996
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the characteristics of the seeker, rather than the circuits. The simplified ship model also

eases extension of the overall model because fewer corner reflectors must be placed and

managed.

From an operational perspective, and perhaps even a combat modeling perspective,

VIEWS is promising. It runs on inexpensive hardware and is fast enough to be used as

a subroutine in a scenario testing model for tactics development. For combat models,

VIEWS could be used to generate databases for lower resolution models, following the

ATCAL/COSAGE [DTIC, 1980, unsighted] methodology.

The remainder of this thesis is organized to examine and develop a reusable model

component for active sensors, and then to address the problem of reusing information,

experience and computer code for simulation support of military systems as they mature.

In Chapters II and III we will focus on a single aspect of the countermeasure simulation

problem, sensors, and provide a concrete example of a reusable model component. We then

discuss a proposed software framework in Chapter IV.

4



II. A CONCEPTUAL MODEL OF ACTIVE SENSORS

Development of a component, such as a sensor, requires a conceptualization of the

component to be modeled. We have several goals in this chapter. First, we will describe

the important features of an active sensor from the viewpoint of a number of simulation

consumers. From this we develop an operational description that will serve as a guide in

the following section, where we develop the sensor component conceptual model.

To facilitate construction of a reusable component, the conceptual description, or

abstraction, will be designed to accommodate simulations at any resolution and all quali-

tative categories of modeling. The abstraction will accommodate all identified world views

without imposing any particular resolution or viewpoint, and should be understandable by

people not necessarily expert in sensor system design.

A. WORLD VIEWS

We identify four potential “consumers” ( i.e., users) of our sensor model and attempt

to define each consumer’s idea of an active sensor by listing the important characteristics

of the sensor from that consumer’s point of view. This exercise will identify the common

elements of the different viewpoints and, perhaps more importantly, the differences, to

ensure our operational description accommodates all viewpoints.

1. Strategic Planner

The strategic planner sees a sensor as a device carried by some platforms which

detects, and possibly locates, certain things in the vicinity of its owner. Characteristics of

interest might be:

• Accuracy.

• Portability.

• Controllability.

• Susceptibility to environmental conditions.

• Susceptibility to counter detection.

The strategic planner is interested in Measures of Effectiveness associated with the

information the sensor provides, rather than the details of the sensor’s implementation.

5



2. Tactics Developer

The tactics developer, who is also interested in battle effectiveness, sees a sensor sim-

ilarly to the strategic planner, but at a lower organizational level. Important characteristics

for this simulation consumer might be:

• Accuracy.

• Power consumption.

• Human resource consumption.

• Susceptibility to environmental conditions.

• Controllability.

• Susceptibility to counter detection.

Like the strategic planner, the tactics developer is interested in Measures of Ef-

fectiveness associated with the information provided by the sensor, but he may also be

interested in some of the details of implementation. He is interested in what the sensor

does, what information it provides, and the quality of that information, but he may also be

interested in some of the details of how that information is obtained.

3. Procurement Professional

The procurement professional sees a sensor as a device which has a specified purpose,

and a set of specified capabilities. Because he is usually managing a contract with explicit

requirements, he is interested in Measures of Performance, such as:

• Signal strength.

• Bearing and range resolution.

• Detection degradation due to environmental conditions.

and in Measures of Effectiveness, such as:

• Probability of detecting a specified target at a specified range.

• Probability of system failure.

• Probability of counter detection.

6



4. System Designer

The sensor designer has a much more detailed view. To him, an active sensor is a

device which detects and locates certain things in the environment by emitting an energy

signal, waiting for that signal to return, and then processing the returned signal to derive

information. The system expert is tasked with adding to the advantages of the system and

reducing the disadvantages, by meeting a set of design specifications for performance, such

as:

• Power requirements.

• Signal strength.

• Antenna gain.

• Detection thresholds.

The needs of all of these simulation consumers can be satisfied by using an appro-

priate set of abstractions. The abstractions do not satisfy any needs themselves, but allow

the construction of components that do. To define the interfaces required in the framework,

we must settle on a single operational description.

B. OPERATIONAL DESCRIPTION

The most detailed description need not be adopted for the purposes of modeling a

generic sensor. Indeed, as we are designing an abstraction of the sensor, there are many

details that are both unnecessary and unwanted. As stated previously, our goal is to develop

an abstraction that fits into models of many styles and resolutions. As we will show in

Chapter III, adopting this abstraction greatly enhances the possibility that components

will be applicable in some unknown future model without limiting the detail that can be

achieved. We will adopt the following generalized operational description of an active sensor:

An active sensor is a device which translates data into informa-
tion. The data is acquired by emitting a signal and waiting for it

to return; upon its return, the signal is processed by the sensor to
generate information, which is sent to the sensor’s users for an un-
specified use. The sensor may have various modes of operation which
are controlled by its owner via some method of issuing commands.

7



The entities shown in Figure 2.1, represent the sensor and all of the entities the sensor

communicates with. The sensor exchanges information with its users, takes commands from

its owner, and sends and receives signals. The abstract sensor component is analogous to

object oriented Software ICs, due to Cox [Cox and Novobilski, 1991], and can be developed

with no knowledge of an overall model in which it will eventually be used.

Active 
Sensor 
Signal

CommandInformation

Owner

Active Sensor

User(s)

Active 
Sensor 
Signal

Figure 2.1. An active sensor and the other simulation entities it interacts with.

C. OBJECT DESIGN

Because we are developing the conceptual model for eventual implementation in an

object oriented program, we begin design by defining the important objects, or entities in

the description. We will focus on abstract objects; that is, we will specify the behaviors of

each entity, but say nothing of how those behaviors will be carried out.

The sensor exists in an environment, is perhaps mounted on a platform of some

kind, has an owner and, possibly, several users. The signals that carry information between

entities and sensors are created by the sensor but act according to their own rules. The signal

interacts with the environment and other entities as arbitrated by an entity we designate

the Referee (Entity 10 below). Figure 2.2 will be a useful guide to the descriptions of these

entities.

Entity 1

Signal. An object to abstract the notion of data that moves through space and time.
Signals may represent concrete energy signals, such as sound waves or radar waves, or

abstract signals, such as messages. In some cases, the signal may interact with the Referee
to determine its own behavior.

8



SignalReceiver

Responder

Sensor

ActiveSensorSignalSignal

SensorUser

SensorOwner

ActiveSensor

Commandable

Figure 2.2. Inheritance Graph for Abstract Sensor Entities.

Entity 2

Signal Receiver. An object that can receive signals. Behavior resulting from reception of
a signal is unspecified. There need be no guarantee that a particular Signal Receiver will
understand all signals.

Entity 3

Commandable. An object that can receive commands. Behavior resulting from reception
of a command is unspecified. There need be no guarantee that a particular Commandable
entity will understand all commands.

Entity 4

Sensor. A special kind of Signal Receiver that translates signal data into information.
Also, a special kind of Commandable entity. Signals are processed and the results are sent
to the sensor’s users, perhaps only on request. The Sensor may have change modes of
operation when it receives a command from its owner.

Entity 5

Active Sensor. A special kind of Sensor that can generate its own signals. Because it is
a Sensor, the Active Sensor is also a Signal Receiver and a Commandable entity.

Entity 6

Active Sensor Signal. A special kind of Signal which is created by active sensors. The
Referee (Entity 10) is used to discover what other objects a signal should interact with. The
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Referee is used in this manner to hide information from other entities, namely the Sensor,

who should have no knowledge of the entities it is searching for, apart from the information
conveyed by its signals. The result of interaction with another entity will be defined by the
properties of that entity and the particular signal, but is unspecified.

Entity 7

Responder. A special type of Signal Receiver that responds to a signal by generating an-
other signal. The intended use of Responders is to represent the signal reflecting properties
of an entity.

Entity 8

Sensor Owner. An entity that can own a sensor. Such an entity must know how to issue
commands to the sensor and possibly query the sensor for information about it’s operational
status. Because this ability is a feature of all types (e.g., passive, bistatic) of sensors, we do

not specify this entity to be an active sensor owner. The owner of a sensor must also have
position information.

Entity 9

Sensor User. An entity that can accept the information output by a sensor. Such an entity
may also know how to ask the sensor for information. Because all types of sensors will output
similar information to their users, and because the abstract model should accommodate all
types of sensors, we do not specify this entity to be an active sensor user

Entity 10

Referee. An entity that arbitrates the activities of other entities. The Referee enables
encapsulation by providing the means for entities to get the information they need to im-
plement behavior, while keeping that information hidden until it is needed. Hiding of this

information is essential to long term software stability, and greatly simplifies the structure
of other simulation entities. Thus, when the signal needs to know what entities it will
interact with in its lifetime, it must ask the referee.

D. DISCRETE EVENT DESIGN

Because we are developing the conceptual model for eventual implementation in a

discrete event simulation, we must define the events for the entities we have defined. We will

use event graphs, due to Schruben [Schruben, 1983], to graphically describe the processes

being modeled. Event graphs are directed graphs in which the nodes represent events, and

the edges represent scheduling. A concise introduction to event graphs can be found in
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[Buss, 1995]. The graphs shown here are necessarily incomplete due to their generality.

Implementations of concrete sensor examples will add the details, such as time delays and

scheduling conditions that are necessary for the particular implementation.

1. The Active Sensor Entity

The active sensor itself has four events that are defined by the inheritance relation-

ships shown in Figure 2.2 and one additional event, as shown in Figure 2.3. The implemen-

tation of inherited behaviors may be specified in parent classes or in the particular sensor

being implemented.

Receive
Signal

Generate
Signal

Send
Info

Event Scheduled
by Active Sensor 

Signal  Object

Event Scheduled
by Sensor Owner Object

Receive
Command

Propagate Event 
Scheduled

in Active Sensor 
Signal Object

Event Scheduled
in Sensor User 

Object

Send
Status

Event Scheduled
by Sensor Owner Object

Event Scheduled
in Sensor User 

Object

Figure 2.3. The generalized event graph for an active sensor. Specific sensors will have
conditions, timing rules and parameters on the arcs. Specific sensors will also have state variables
on the nodes, with rules for updating them.

Behavior 1 (Active Sensor)

Generate Signal. Instantiate a signal object of a particular kind, establish it’s parameters
and tell it to propagate.

Behavior 2 (Signal Receiver)

Receive Signal. Accept a returning signal, extract data from it, and process that data.

Behavior 3 (Sensor)

Send Information. Give the information gained through processing signals to a user.
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Behavior 4 (Sensor)

Send Status. Process a request from the owner to report operating status.

Behavior 5 (Commandable)

Receive Command. If the command is one understood, then carry it out, otherwise, do
nothing.

2. Active Sensor Signal

The active sensor signal only has one inherited event and one event of its own, as

depicted in Figure 2.4.

Behavior 6 (Signal)

Propagate. Ask the referee for a list of the entities that might be encountered based on
signal properties. Then, tell each entity in the list to reflect the signal. Depending on the
resolution of the particular signal model, signal parameters given to the reflecting object
may be calculated based on environmental conditions, which are obtained via the referee.

Behavior 7 (Active Sensor Signal)

Return to Sender. Use environmental information provided by the Referee to determine
properties upon arrival back at the sensor. Tell the sensor to receive the signal. Note that

the returning signal is new instance of the signal type originally propagated by the sensor.

Propagate
Event Scheduled
by Active Sensor  

Object

Event Scheduled
by a Responder

Receive Signal 
Event scheduled 
in Active Sensor 

Object

Receive Signal 
Event Scheduled

in a Signal 
Receiver

Return
to

Sender

Figure 2.4. Generalized event graph for the abstract sensor signal entity.

3. Responder

Responders have only the one event inherited from Signal Receiver, which is as

shown in Figure 2.5.
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Behavior 8 (Signal Receiver)

Receive Signal. Receive a Signal and create a new one. The new Signal properties will be
based on the properties of the first, and the properties of the Responder define the details

of the interaction. Send the new signal back to it’s point of origin by telling the new signal
to return to sender.

Receive 
Signal

Event Scheduled
by Active Sensor  

Signal
Return to Sender Event Scheduled

in a new Active Sensor Signal Object

Figure 2.5. Generalized event graph for the abstract sensor signal reflector entity.

4. Sensor Owner

Figure 2.6 shows the single event for the Sensor Owner.

Behavior 9 (Sensor Owner)

Receive Sensor Status. Receive a message from a sensor containing the Sensor’s opera-
tional status. This may trigger other, unspecified actions.

Receive 
Sensor 
Status

Event Scheduled
by Active Sensor 

Object
Unspecified behavior

Figure 2.6. Generalized event graph for the abstract sensor owner entity.

5. Sensor User

Since Sensors might provide information without warning, or could experience a

delay in satisfying a request for information, the Sensor User needs a method for receiving

information, as shown in Figure 2.7.

Behavior 10 (Sensor User)

Receive Sensor Information. Receive a message from a sensor containing sensor contact
information. This may trigger other, unspecified actions.
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Receive 
Sensor 

Information

Event Scheduled
by Active Sensor 

Object
Unspecified behavior

Figure 2.7. Generalized event graph for the abstract sensor user entity.

In the next section, we translate the abstract objects and activities into a program-

ming interface behind which the actual behaviors will be implemented.

E. ABSTRACT IMPLEMENTATION

Our implementation is in the new computer language, Java, from Sun Microsystems

[Gosling and McGilton, 1996]. The Bibliography lists books and documents found on the

World Wide Web which are useful in learning about the language. Since Java’s syntax is

similar to C and C++, anyone with a passing familiarity with either of those languages

should be able to follow the source code examples shown in this chapter and the next.

Java, like any good object oriented language, can directly represent abstractions

such as those we have described. The Java constructions to do this are called interfaces

and abstract classes. An interface is a Java construct that defines constants and specifies

methods that must be implemented by any class that claims to conform to the interface.

Interfaces support single and multiple inheritance from other interfaces. Unlike an interface,

an abstract class may implement some of the methods it declares. Abstract classes are

always part of a single-inheritance tree, but, like concrete classes, may implement any

number of interfaces. Neither interfaces nor abstract classes may be instantiated.

Defining the interfaces will complete the design of the abstract sensor component

and provide the foundation for concrete examples. Complete code listings for the interfaces

presented here can be found in Appendix A. The completed, though still general, event

graph for the abstract model is shown in Figure 2.8 on page 15.

1. The Sensor Interfaces

The inheritance tree shown in Figure 2.2 on page 9, contains four interfaces to be

implemented by any Active Sensor. Figure 2.9 on page 16 expands the pertinent portions

of Figure 2.2 to include the method declarations in each interface. Due to inheritance, the

Active Signal interface specifies five methods that must be implemented by any object that

claims to implement that interface:
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Receive
Signal

Generate
Signal

Send
Info

Receive
Command

Active Sensor

Receive 
Sensor 
Status

Sensor Owner

Receive 
Sensor 

Information

Sensor User

Return
to 

Sender

Propagate

Active Sensor 
Signal

Propagate

Active Sensor Signal

Receive
Signal

Responder

Return
to 

Sender

Send
Status

Figure 2.8. Complete generalized event graph for abstract sensors.

public void receiveSignal ( Signal s );

public void receiveCommand( Command c );

public void sendInfo ( SensorUser u );

public void sendStatus ( SensorOwner o );

public void generateSignal();

2. The Signal Interfaces

As with the sensor interfaces, we expand Figure 2.2 to show the methods declared

in each interface in Figure 2.10 on page 16. The resulting methods required of any Active

Signal are:

public void propagate ();

public void returnToSender();
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SignalReceiver

Sensor

ActiveSensor

Commandable

public void 
   receiveSignal(Signal s);

public void
   receiveCommand(Signal s);

public void
   sendInfo(SensorUser u);
public void
   sendStatus(SensorOwner o);

public void
   generateSignal();

Figure 2.9. Expanded Sensor Interface Inheritance Tree.

Signal

public void 
   propagate();

ActiveSensorSignal

public void 
   returnToSender();

Figure 2.10. Expanded Signal Interface Inheritance Tree.
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3. The Responder Interfaces

Again, we expand Figure 2.2 to show the methods declared in the Responder inter-

face in Figure 2.11. The resulting methods required of any Responder are:

SignalReceiver

Responder

public void 
   receiveSignal(Signal s);

Figure 2.11. Expanded Responder Interface Inheritance Tree.

public void receiveSignal();

4. Other Interfaces

The remaining interfaces are not members of an inheritance hierarchy. The Sensor

Owner interface declares one method:

public void receiveSensorStatus( SensorStatus s );

and the Sensor User interface declares another:

public void receiveSensorInfo( SensorInfo i );
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III. DEMONSTRATIONS

In this chapter we develop several models to demonstrate the use of the abstract

sensor component in a number of modeling contexts. The demonstrations are intended to

show that the abstraction can serve in both high and low resolution models to support very

different types of analysis.

The descriptions here focus on the sensor component, and the large body of support-

ing code will not be discussed at length here. In Chapter IV, we will discuss a supporting

framework that should be developed to make components such as the sensor generally useful.

A. SCENARIO

The demonstrations model a so-called barrier search scenario. The barrier search

was chosen because it has mature analysis techniques with which to verify the new model.

Additionally, the barrier search does not require a sophisticated position or motion model

and is straightforward to implement.

In a barrier search problem (see Figure 3.1), there are two players: a target and a

searcher. The target attempts to travel down a channel with speed u. The searcher creates

a barrier across the channel by traveling back and forth between two points, A and B so

that its sensors traverse the entire channel width, L. The searcher has speed v.

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

L

Target

R

Searcher

Rv

u

A B

Figure 3.1. Barrier Search Scenario. A searcher with a sensor of effective radius R travels back
and forth between points A and B with speed v. The target moves down the channel with
speed u.
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The demonstration models discussed in the next two sections model the barrier

search. In both models the searcher begins on the left and patrols the barrier until some

number of targets have attempted to cross. Targets arrive at a location which is uniformly

distributed over the length of the barrier. Target arrivals occur when the previous target

is detected or successfully penetrates the barrier. Target and searcher have fixed speeds

throughout the experiment.

The barrier search is modeled with two sensor component models using the compo-

nent developed in Chapter II. The first is a deterministic “Cookie-Cutter” glimpsing sensor.

The second is a glimpsing radar based on the theoretical physics of radar.

B. COOKIE CUTTER SENSOR

Cookie cutter sensors are the foundation of search and detection theory in Opera-

tions Research. The cookie cutter sensor has radius R, and detects a target with certainty

if the range, r, to the target is less than R, as shown in Figure 3.2 and in Equation 3.1.

Pd =

{
1 if r ≤ R
0 otherwise

(3.1)

Range

Pd

1

R

Figure 3.2. Probability of Detection for a Cookie Cutter Sensor.

1. Model

The barrier search scenario using cookie cutter models are developed analytically

in [Washburn, 1989] and [OASG, 1977]. The perspective taken in this development is op-

erational; the goal being to determine the probability of detection given values for the

parameters. We assume the target arrives at the barrier at a position which is uniformly

distributed over the channel width, L. The searcher begins to traverse the channel from
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the left when the first target arrives. In this circumstance, the searcher has a maximum

probability of detecting the target as defined in Equation 3.2.

Pd ≤ min

1,
2R

L

√
1 +

(
v

u

)2
 (3.2)

The long run probability of detection is more closely approximated by Equation 3.3.

Pd ≈

 1−
[

1
λ(λ+1)

(
λ−

√
r2+1−1

2

)2
]
, r ≤ 2

√
λ (λ+ 1)

1, r > 2
√
λ (λ+ 1)

(3.3)

where,
r = v

u

λ = (L−2R)
2R

2. Simulation

To simulate the scenario with the sensor component developed in Chapter II, con-

crete classes which implement the sensor component interfaces must be constructed. List-

ings for these classes can be found in Appendix B. Listings for supporting code to han-

dle discrete event simulation and entity motion can be found by following links from

http://dubhe.cc.nps.navy.mil/~ahbuss on the World Wide Web.

The cookie cutter sensor is simple to implement using the sensor component model.

Four classes must be defined: a Sensor, a Signal, a Responder and a Platform. As shown in

Figure 3.3, these entities correspond to the ones in the abstract model. In some cases, the

concrete classes inherit from classes or implement interfaces that have not been discussed;

Listings for these classes are available at http://dubhe.cc.nps.navy.mil/~ahbuss, and

are discussed in greater detail in [Buss and Stork, 1996].

a. CCActiveSensor Class

The cookie cutter active sensor implements the methods of interfaces Com-

mandable and ActiveSensor, as well as the methods required of any simulation entity. It

responds to only two commands: one to activate, and one to passivate the sensor. When

the sensor is activated, it schedules a generateSignal event to occur after a delay. The

delay is set when the sensor is instantiated with an argument to it’s constructor.

When the generateSignal event occurs, the sensor instantiates an object

of class CCActiveSensorSignal, passing as parameters to the constructor a reference to the

sensor itself, the position at generation time and the maximum range of the signal. The
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SignalReceiverCCActiveSensor

Commandable

Responder

ActiveSensor

ActiveSensorSignal

SimpleShip

CCActiveSensorSignal

CCActiveSignalResponder

SensorOwner

SensorUser

SimEntityImpl

Platform

Figure 3.3. Cookie Cutter Model Inheritance Graph. Entities that schedule events which pass
simulation time inherit from the Simkit [Buss and Stork, 1996] class SimEntityImpl. The sensor
component interfaces from Chapter II are implemented by the entities to establish the sensor-
related behaviors. The class SimpleShip implements the Responder interface because it may
own an instance of a Responder, namely the CCActiveSignalResponder.

signal is then told to propagate. Finally, a generateSignal event is scheduled to occur

after the delay time.

When the sensor receives a signal, it checks to ensure the signal is it’s own,

and records the fact that a detection was made. It also cancels any further signal generation,

effectively ending the simulation trial.

b. CCActiveSensorSignal Class

The signal class for the cookie cutter sensor simply stores the information

passed to it’s constructor: who made it, where was it made, and what is its maximum range.

When told to propagate, the signal asks the Referee for a list of the players that respond

to signals. For each player in the list, the signal gets its position and calculates the range

from the originating point. If that range is less than the maximum range of the signal, the

player is told to receiveSignal.

A responder creates the signal with a different constructor which takes the

original signal together with a position as arguments. Information is copied from the original

signal, and no further reference to that signal is retained.

When told to returnToSender, the signal tells its creator (the CCActiveSen-

sor instance that created the original signal) to receiveSignal.

22



c. CCActiveSignalResponder Class

The responder only has one method, receiveSignal. When this method is

called by a signal, this responder simply instantiates a new signal of the same type, using

the position of the responder’s platform and the original signal as arguments to the signal

constructor. The new signal is then told to returnToSender.

d. Main Program

In Java, all code must be part of some class, so there is a main class in

addition to the sensor related classes that runs the model. The method of batch means

[Law and Kelton, 1991] is used to find the fraction of trials in which the target is detected.

The algorithm followed by the main class to run the simulation is as follows:

1. Instantiate two objects of class SimpleShip: searcher and target

2. Instantiate a CCActiveSensor object with maximum range R, and add it to the
searcher

3. Instantiate a CCActiveSignalResponder object and add it to the target

4. Instantiate two data collectors, one for batch results and one for trial results

5. For i = 1 to i = number of batches

(a) reset the trial data gatherer

(b) Issue a patrol command to the searcher

(c) For i = 1 to i = number of trials per batch

i. Place the first ship at the left-hand barrier waypoint position

ii. Place the second ship at a position uniformly distributed between the left
and right ends of the barrier, and north of the barrier a distance R

iii. Issue a course/speed command to the target

iv. Issue an activate command to the searcher

v. Start the simulation clock

vi. Record detection or non-detection in the trial data collector

(d) Record the average number of detections from the batch in the batch data
collector

6. Output results

The program is invoked (under UNIX), with the following command line:
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java CCBarrier <batches> <trials per batch>

<search speed> <target speed>

<sensor range> <glimpse interval>

<barrier length> [seed]

or

java CCBarrier <filename>

Where,
batches = Number of batches to run

trials per batch = Number of target attempts per batch
search speed = Searcher speed in knots
target speed = Target speed in knots

sensor range = Sensor range in nm
glimpse interval = Time between sensor glimpses in seconds
barrier length = Width of the channel in nautical miles
seed = Long integer random seed (optional)

filename = Name of an input file

If a filename is specified, that file has a single line containing the arguments

as listed, separated by white space.

Alternatively, this program is available as an applet on the World Wide Web

that can be run in a Java enabled web browser, such as Netscape 3.0 or Microsoft Internet

Explorer 3.0. The applet version provides a graphical interface with labeled fields to fill in

and produces the same output as the program. The applet can be found by following links

from http://dubhe.cc.nps.navy.mill/~ahbuss/.

3. Results and Verification

The model proved to be insensitive to the value for the glimpse interval parameter

up to about 960 sec. However, runtime is dramatically reduced by using larger values. The

results below correspond to the following set of parameters:

Number of batches = 500

Trials per batch = 50
Search Speed = 12(knots)
Target Speed = 7(knots)
Sensor Range = 10(nm)

Glimpse Interval = 480(sec)
Barrier Length = 80(nm)
Seed = 2116429302
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This run resulted in an average detection rate of 0.4706 with variance of the mean

0.0044. This gives a 95% confidence interval for the average detection rate of (0.340, 0.601).

A histogram of the batch results of are shown in Figure 3.4. To verify the results, Equa-

tion 3.3 was solved with the same parameters:

v = 12(knots)
u = 7(knots)

R = 10(nm)
L = 80(nm)

resulting in Pd ≈ 0.476, which falls within the confidence interval of the simulation results.
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Figure 3.4. Cookie Cutter Model Results. This histogram counts the number of batches
resulting in a given probability of detection. The probability of detection should be normally
distributed, as shown by the pdf plotted with the histogram.

C. MONOPULSE RADAR

Missile countermeasures must be evaluated with a more sophisticated sensing model

than the Cookie Cutter described above. The Cookie Cutter sensor is sufficient for the

barrier search because the MOE is simple, i.e., the probability that the searcher detects the

target. With countermeasures, the MOE changes from a simple determination of detection

or non-detection, to one of discrimination, i.e., the probability that the sensor correctly

identifies it’s target when several are present.
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We have two goals in this demonstration of a Monopulse Radar model. First, we wish

to reuse the barrier scenario to demonstrate the ability to reuse a large body of supporting

code. In fact, the main program has only minor modifications, which we will highlight

below. Second, we wish to develop a sensor model that operates at a higher level of detail,

capturing some of the physics of radar operation.

1. Model

The model is still highly stylized—the sweep of the radar is not modeled explicitly,

but simulated with an omnidirectional signal containing only the number of pulses that

would be incident on the target if the signal was a sweeping beam. Signal generation is

timed to coincide with the sweep rate to approximate the number of glimpses a directed,

sweeping radar would get. Finally, the signal used simulates a pulse train, rather than

individual pulses.

To model the physics of waves, the model is based upon The Radar Range Equation

(Equation 3.4), which can be found in any book on radar.

S

N
=

PGAσrcsEn

[4πR2]2
[
σ2
noise + σ2

clutter

]
[LsysLatm]

(3.4)

where,
S
N = Signal to Noise ratio
P = Average transmitted power
A = Antenna aperature

G = Antenna gain
σrcs = Target radar cross section
E = Integration efficiency
n = Number of pulses integrated

R = Slant range to target
σ2
noise = rms noise power
σ2
clutter = rms clutter power
Lsys = System losses

Latm = Atmospheric losses

Equation 3.4 is rearranged in Equation 3.5 into terms that will be useful in the implemen-

tation.
S

N
=

[
P

4πR2

] [
σrcs

4πR2

] [
AEn

σ2
noise

]
(3.5)

Where we have removed variables that will not be modeled.

The first term of Equation 3.5 is the signal power incident upon the target. The

second term, when multiplied by the first produces the signal power returning to the radar
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receiver. Finally,when the third term is applied, the result is the signal to noise ratio (SNR)

as processed by the radar system.

2. Simulation

Several assumptions are made in the simulation. First, we assume a constant thresh-

old SNR for the radar system below which a returning signal will not constitute a detection.

Second, the target is assumed to be a so-called Swerling case 3 target [Swerling, 1976], which

models a radar reflector that is dominated by a single large scatterer and many smaller in-

dependent scatterers. This model simulates a large scatterer surrounded by ocean clutter.

Receiver noise is assumed to be normally distributed. Finally, we will ignore atmospheric

and system losses.

As previously stated, the simulation will use a glimpse approach similar to the

original Cookie Cutter model. To be consistent with the assumptions of the Swerling target

model, probabilistic independence between successive glimpses is assumed. The source code

listings for this demonstration can be found in Appendix C.

a. MonopulseRadar class

The MonopulseRadar class is similar to the CCActiveSensor, requiring mod-

ification of only two methods. First, the generateSignal method generates a new sig-

nal type, PulseTrain, rather than the CCActiveSensorSignal. Second, the receiveSignal

method applies the final term of Equation 3.5 to the returning signal and compares the

result to a fixed threshold value to determine if a detection has been made.

b. PulseTrain class

The PulseTrain class is a new Signal type, implementing the ActiveSen-

sorSignal interface. To incorporate the physics of wave propagation, reception by potential

contacts is no longer instantaneous. Instead, the PulseTrain class inherits from the SimEn-

tity class and defines simulation events to schedule signal arrival at the potential contact

after a delay computed from the range to the contact. Similarly, the returning signal arrives

at the sensor after a delay.

The PulseTrain is instantiated with all the information needed for subsequent

calculations, and told to propagate as before. After retrieving the potential contact list from

the Referee, it calculates the range to each potential contact, and if the contact is within

the range scale setting of the radar, it schedules an arrival based on the range and the speed
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of light. When the arrival event occurs, the PulseTrain calculates the power incident upon

that Responder, and calls the responder’s receiveSignal method.

Returning PulseTrains are instantiated by the Responder with the σrcs of

the Responder as an argument. Term two of Equation 3.5 is applied, and the result stored.

The range to the sensor that created the original signal is calculated and arrival is scheduled

after the appropriate delay. When the arrival event occurs, the PulseTrain calls the sensor’s

receiveSignal method.

c. PulseTrainResponder class

The PulseTrainResponder is instantiated with a mean value for σrcs. When

the receiveSignal method is called, it instantiates a copy of the received signal with a

value of σrcs, which is used in term two of Equation 3.5. The value used is a chi-square

random variate with four degrees of freedom which models a target with a single dominant

radar scatterer and several smaller scatterers.

d. Main Program

The main program is virtually identical to the Barrier Search program of

the previous demonstration. The differences are:

1. The searcher is equipped with a MonopulseRadar instead of a CCActiveSensor.

2. The target is equipped with a PulseTrainResponder rather than a CCActive-
SignalResponder.

3. Results

The Monopulse Radar model was run with the same parameters as the Cookie Cutter

model. Additional parameters used for the run correspond to the operational parameters

of the SPS-68 surface search radar as published in [Streetly, 1996]:

Pave = 10(W)

A = 1.37 m2

E = 0.96
σnoise = 6(dB), average

N = 18(pulses/glimpse)

The model run resulted in an average detection rate of 0.4540 and variance 0.00451

(see Figure 3.5). This produces a 95% confidence interval of (0.3224, 0.5857). As expected,

the confidence interval for the radar is lower than the perfect cookie cutter, but still contains

the theoretical result of Equation 3.3.

28



Figure 3.5. Monopulse Radar Model Results. This histogram counts the number of batches
resulting in a given probability of detection. The distribution of an ideal sensor is also plotted.
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IV. APPLICATION

The models presented in the previous chapter demonstrate the usefulness of the

abstract model developed in Chapter II. The component model we have developed is appli-

cable to the missile countermeasure problem, but not immediately useful in the absence of a

larger framework. In particular, it was not possible to develop a motion model sophisticated

enough for the missile-ship engagement scenario in the time available for this research.

Since time did not permit a more directly applicable implementation, we will discuss

what is needed to use the sensor component in more sophisticated future models. We do so

by sketching out the other components that would make up a framework. We will focus, as

we did in Chapter II, on abstractions.

The framework envisioned in this chapter was inspired by an existing library, the

Naval Postgraduate School Platform Foundation [Bailey, 1995]. Recent research employing

the Platform Foundation, including a thesis related to the problem of simulating radars

[Ellison, 1996], has highlighted the usefulness of simulation libraries in developing models

quickly. It has validated the concept of reusable and extensible computer code, and provided

important insights into the problem of designing a true framework. However, the Platform

Foundation was developed to be an extensible application, rather than a framework or

Application Programming Interface (API).

Readers familiar with the Department of Defense High Level Architecture (HLA)

[DMSO, 1996], will notice some differences in design philosophy between it and the frame-

work we propose. Whereas HLA is being designed to facilitate cooperation between existing

and future models, the framework proposed here is designed to facilitate rapid development

of small to medium sized models for a specific purpose.

While the HLA object model is a sound approach to an immense problem, the

modeler’s ability to hide information is limited by the requirement to broadcast information

about an entity without concern for how that information will be used. The broadcast

mechanism is only necessary to support cooperation between legacy and future models, but

adopting this mechanism as the centerpiece for model cooperation forces future models to

conform when they could otherwise benefit from the full benefits of object oriented design.

A. DESIGN GUIDELINES

The proposed framework, the Abstract Military Modeling Toolkit (ammt), was con-

ceived for a much smaller problem than the HLA, although it shares many of the same

difficulties. The intended users of ammt are organizations like NPS, SEWS, and test and
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evaluation support organizations that have a need for simulation models but limited re-

sources. To this end, design was guided by a few general principles:

• Language. ammt should be implemented in a portable, easy to learn language
with a larger programmer base. Compilers for this language should be freely

available.

• Object Oriented. ammt should be designed as an object oriented class library
to maximize the benefits provided by software engineering.

• Abstract. At its core, ammt should be a set of abstract classes or interfaces.
This abstract core can establish a sound design base that does not impose the
restrictions of a concrete implementation. Any number of concrete implementa-

tions could be developed for particular modeling contexts.

• Distributed. ammt should be designed with distribution in mind, and even-

tually should directly support both distributed object libraries and distributed
execution.

The remainder of this chapter examines a few critical areas that should be addressed

by ammt. The list is incomplete, but sufficient to guide a full design and implementation.

We will discuss three specific areas of interest for military modeling:

• Arbitration. An mechanism to effect the principle of least privilege, or infor-
mation hiding.

• Location. A generalized model for locating entities in physical space.

• Movement. A generalized model for physical movement.

B. ARBITRATION

Simulation of real entities, such as soldiers, ships and aircraft, involves managing

a complex and unforeseen set of interactions between those entities. In an object oriented

program, it is desirable to use an event model, similar to that used in modern graphical user

interface (GUI) programming. That is, entities exist with some state, and wait for events

to occur. In a GUI, an entity such as a button, merely exists—it is only the externally

generated event of a mouse click that causes the button to actually do anything.

A simulation analogy to the GUI Button is an entity, such as a ship. A simulation

model of the ship exists with some state until an event occurs that results in state-changing
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action by the ship. For example, the ship may be cruising at some course and speed and

receive a communication message that causes it to maneuver. Or, the ship may encounter

an environmental interaction, such as running aground in shallow water.

This approach has many advantages. For instance, the designer of the ship model

need not be omniscient. So long as the ship object responds to the appropriate events, it

need not know how to determine whether or not it has run aground. This allows information

to be maintained in a safe place, separate from the ship. Just as the ship object has

no knowledge of the contents of a message before the message arrives, it should have no

knowledge of the impending grounding.

Software stability and extensibility is enhanced by hiding information as described

above. Book keeping of information, such as the existence of shallow water at some location,

is not duplicated across all entities that might be interested, so the chances for error in future

code is reduced. The memory requirements of entities are also reduced, though perhaps at

a price paid in execution time.

Additionally, hiding of information makes “cheating” more difficult. Cheating arises

when a programmer, faced with a deadline, has “back door” access to information that would

normally be considered private to some other object. The “quick and dirty” solution is to

use the back door, with full intentions of correcting the poor code later. Later, when the

implementation of the object that “owns” the information is changed, the cheating code

breaks because the quick and dirty solution was forgotten.

These issues motivate a structure that maximizes the hiding of information. How-

ever, the shallow water example above serves to raise the question of where information

should reside. Who should know where the shallow water is? The answer adopted in this

preliminary design of the ammt lies in arbitration of such interactions by two simulation

entities that will be part of every model constructed with ammt: The Referee, and the

Environment.

1. Referee

The Referee is envisioned as a god-like entity that is kept informed of everything

that transpires, although it is not necessarily aware of information internal to simulation

entities. All interactions between other entities will in some way involve the Referee. The

sensor component developed in Chapter II serves as an example: Signals interact with the

Referee to determine what other entities will be affected by the signal.

Such a scheme requires all players in the simulation to register with the Referee

when they are created and to unregister when they are destroyed. It also requires players
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to register their activities, or state changes, so the Referee can schedule events, or opportu-

nities, that are unforeseen by the player. The Referee will make use of another simulation

entity, the Environment, to determine some such events, and to provide information to

players about environmental conditions.

2. Environment

The Environment class holds information about conditions in a physical region. It

can schedule state changes in itself, such as changes in the weather or season. There may be

several Environment instances in a simulation, particularly if the simulation models activity

in a large physical region.

The Environment class would also be the place where topographical and domestic

information, such as soil type and vegetation, would be maintained. Players will not directly

interact with the environment, instead, they interact with the Referee, which gets the

information from the Environment and passes it along to the player. This indirection

is imposed to allow construction of components who’s only direct link to the rest of the

simulation is the Referee.

3. Opportunities

An Opportunity embodies the notion of something that might happen. Opportuni-

ties are the sole responsibility of the Referee, who schedules and cancels them according to

it’s own rules.

As an example, assume there are two ships, each with a course and speed that will

eventually lead to collision. Assuming the ships have no sensors, they have no knowledge

of each other, and so they are unable to interact. If this were the complete model, nothing

would ever happen.

But, in ammt the ships register their position, course and speed with the Referee

when they maneuver. The Referee then calculates the closest point of approach (CPA) and

notices that the ships will collide if they remain on course and speed. This situation causes

the Referee to schedule an Opportunity for the two ships at the time of CPA. If the ships

do not maneuver, the Opportunity will occur at it’s scheduled time, sending a message to

both ships that they have collided. If one of the ships maneuvers before the Opportunity

occurs, then that Opportunity is canceled, the new states are examined by the Referee, and

a new Opportunity might be scheduled.

The Opportunity concept is general enough to handle all interactions that are un-

foreseeable by simulation players. However, this mechanism will potentially result in the
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scheduling of a large number of events. Further, because the Referee must make opportu-

nity determinations whenever any player changes state, the Referee could easily become a

large and unwieldy burden on the model.

C. LOCATION

The idea of location is particularly vexing for simulation modeling. Many systems

exist for specifying an object’s physical location in space, examples include the zones of

TACWARS, the network node locations of JWEAPS, grid squares, hexagons and continuous

coordinates. Further, simulation players have more than one kind of location. For example,

a ship has an organizational location in a fleet, a soldier has a location in a chain of

command, and a radar contact has a location in a radar’s parameter space. We will discuss

only one such location, physical, but the final design should address many.

1. The Position Abstract Class

Because ammt is to be abstract, it is possible to delay some of the problems related to

positioning. We can define an abstract class, Position, that contains no data, but embodies

the notion of a displacement vector. Entities whose state includes physical position would

then have a member variable of type Position. Concrete entities would necessarily be

designed to work with certain specializations of Position, but the abstract entities of the

ammt do not need that specific information.

Because Position is abstract, entities that work with Positions cannot know how to

perform operations on them. Instead, the abstract class, Position, should declare a number

of standard operations that will be needed by simulation entities regardless of the specific

implementation. These operations return either boolean values, or values in the units of

the positioning system. Examples of such operations are:

• add a Position and a Displacement

• subtract a Displacement from a Position

• find the distance between two Positions

• find the charted distance between two Positions

• find the slant range between two Positions

• find the direction from one Position to another

• find the elevation angle from one Position to another
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• multiply a Position by a number

• divide a Position by a number

• determine if one Position is within a region defined by other Positions

• determine if one Position is between two bearings from another Position

• determine if one Position lies to the north of another Position

• determine if one Position lies to the east of another Position

It is often useful to identify entities who have a particular attribute, and define

operations that can be performed on such entities. In Java, the common practice is to define

an interface with the adjective form of the word that describes the attribute. Following this

practice for objects that have the Position attribute, we call the interface “Positionable”.

2. The Positionable Interface

Positionable entities are those that have a position in space. Like the attribute

itself, the interface imposes no specific system of positioning, but merely requires support

for certain operations.

Since Positionable objects are simply objects that have the Position attribute, the

simplest definition the Positionable interface would specify only accessor methods. An

accessor method is one that allows setting and getting of the attribute. In Java, we could

write the entire interface as follows:

public interface Positionable

{

public void position( Position p); // setter

public Position position(); // getter

}

However, this system allows any object to get the Position of any Positionable object,

perform operations on that Position, and set the the Positionable objects Position to a new

value. This is undesirable, since entities such as ships should not be moved around by

entities such as radar signals.

Instead, the operations defined for Positionable objects can parallel the ones for

Position, with a few exceptions:

• find the distance between two Positionable objects
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• find the charted distance between two Positionable objects

• find the slant range between two Positionable objects

• find the direction from one Positionable object to another Positionable object
or Position

• find the elevation angle from one Positionable object to another Positionable
object or Position

• determine if a Positionable object is within a region defined by a set of Positions

• determine if a Positionable object is between two bearings from another Posi-

tionable object or Position

• determine if a Positionable object lies to the north of another Positionable object
or Position

• determine if a Positionable object lies to the east of another Positionable object
or Position

In implementation, these methods are simple redirections to the parallel method in the

Position instance variable. Notice that these methods only provide information, and not

the ability to change the attribute.

D. MOVEMENT

Physical movement can be modeled in many ways, from Newtonian physics that

models forces on objects to affect motion, to highly stylized instantaneous jumps from one

location to another. The ammt framework should neither impose nor exclude any such

motion model. Furthermore, each concrete example of physical positioning, such as grids

or continuous coordinates, will require at least one corresponding system for movement. In

the abstract, however, it is only necessary to declare the operations.

As for location, above, there should be abstract objects to contain the state infor-

mation, and interfaces to distinguish objects that have the new attribute. Using the terms

of object oriented design, an object that can move “is a” Positionable object. Hence, new

state variables and behaviors should be based on the existing state information. Movement

requires at least one additional state variable, Velocity.

1. The Velocity Abstract Class

Velocity is an abstract class that encapsulates the notion of changing position as

a function of time. Like the Position class, Velocity should provide for operations so that

other objects can treat it abstractly:
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• add two Velocities

• subtract two Velocities

• find the angle between two Velocities

• multiply a Velocity by a number

• divide a Velocity by a number

• determine the magnitude of a Velocity

2. The Moveable Interface

Moveable objects have both a Position and a Velocity. The Moveable interface inher-

its from Positionable, and adds methods for accessing the motion state of the implementing

object:

• determine the speed of a Moveable object

• determine the direction of a Moveable object’s motion

• determine the relative velocity of one Moveable object with respect to another

E. FURTHER DEVELOPMENT

The issues addressed in this chapter are only a beginning. The abstract framework

components described here only comprise a part of the framework that is required, and even

those will require several design iterations. In particular, the Referee deserves considerable

thought and development, since each new paradigm added to the ammt framework will

necessitate expansion of the Referee’s abilities.

Additional paradigms that should be incorporated into the ammt include, but are

not limited to:

• Motion

Most modeling contexts require the notions of the orientation of objects, rota-
tion, and angular velocity. Constraints on motion based on the type of platform
are also important, for instance, submarines can’t fly.
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• Communication

The idea of a communication message should be provided. Early ideas for this

follow the Signal/Signal Receiver construction used in the sensor component.
The Signal approach allows for modeling of signal interception.

• Passive Sensors

The Active Sensor component developed in Chapter II was designed to be ex-

panded to passive sensors. A critical missing element is generation of signals by
entities other than sensors, and coordinating the reception of those signals by
the Referee.

• Weapon Systems

Although many weapon systems, such as missiles, can be modeled using the

same structure as other platforms, there will be need for weapons that cannot.
One example might be directed energy weapons.

Weapon systems typically have complex supporting systems, such as fire control,
which should be generalized for the ammt if possible.

• Command Structure

Military organizations are centered around a chain of command. The chain of
command should be modeled by ammt to support decision modeling. Decisions
are made based on available information, so an operational commander should
be modeled to be at a location, or on a platform, and to act only on information

available from his sensors and communications equipment.

• Operational Status

Platforms may not always have all of their designed functionality. For instance,
a sensor system may fail, making it unavailable until it is repaired. The concepts

of failure, damage and repair should be abstract components of ammt.

No code was written that actually implements the design described in this chapter.

Instead, it is a sort of designers notebook compiled from the experience of writing the

supporting code for the models presented in Chapter III. The ammt code, such as it is, is

provided at http://dubhe.cc.nps.navy.mil/~ahbuss on the World Wide Web. We look

forward to further development efforts.
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V. CONCLUSIONS

This research set out to explore the problem of providing simulation support for

sensing systems. In the process, we developed some previously unavailable tools in a new

computer language, Java. In the course of this research we perhaps found more questions

than answers, but the insights our model gives for the sensing problem will help guide future

modeling efforts.

We have shown that sensor components can be designed to accommodate a diverse

set of modelers. While the sensor components implemented in this thesis do not fit any

existing framework, the design methodology and abstract concepts are generally applicable,

and independent of any computer language.

We developed a robust and general abstract component model for sensors. We

then used that model to construct several customized components at different resolutions

that work within the same supporting framework. While our abstract model will certainly

benefit from further development, the power of abstract model development is evident.

We have given an example of a method for communication between modelers and

computer programmers. The conceptual sensor model of Chapter II requires no program-

ming expertise to understand. However, the form of the abstract component is easily

understood and implemented by an Object Oriented programmer. Because programmers

discuss their code in similar terms, the modeler who learns about Object Oriented design

is also better equipped to understand the programmer’s discussions of the implementation.

We have demonstrated an agenda for code and concept reuse. Without such a

program, future software development will be slow and costly in an environment of rapidly

changing technology and force structure. This will impact all areas of software development,

including simulations.

Software design is as important as implementation. Software development is an

iterative process, including the software design phase. Because changes in software design

impact a potentially huge body of code, we should recognize its importance and ensure

that software engineers are involved in the process of constructing simulation models. This

is already common practice for large monolithic models, but should also be adopted by

organizations that need smaller custom models. The proposed framework, when available,

will impose a solid software engineering discipline and could relax the need for software

engineering expertise at small organizations.

Clarity and extensibility of models can be more important than run-time efficiency.

Computer hardware and runtime is cheap compared to software development. Simulation
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models should be written to be as generic as possible, due to unknown and unforseeable

needs of future analysis.

System experts should focus on component building, rather than model building, to

support simulation throughout the system’s lifecycle. Simulation experts should focus on

modeling. A framework, such as the one proposed, can facilitate such an arrangement with

potentially great rewards.

There is a need for simulation support that spans the lifecycle of systems. Military

systems remain in service longer than ever before and undergo numerous revisions. Simula-

tion support is required throughout this lifecycle, and should thus be viewed as an integral

part of the system.

A single model cannot span the entire lifecycle. Furthermore, since modeling re-

quirements vary widely depending on the customer, it is impossible to construct one model

that suits all needs. The need for separate custom models necessitates development of

components that can serve in more than one model. Perhaps more importantly, reusable

components are needed to allow for rapid assembly of supporting code to for use in custom

models for new components.

In this thesis we developed models that demonstrate the feasibility of constructing

small simulations with a reusable component framework. The approach requires thorough

development of components in abstract terms. It is noteworthy that the most important

part of the process, design of the model, does not require programming expertise. The

abstract nature of the components suggests that the approach could be applied in larger

scale simulation models as well, and that development of a more complete framework, such

as the one proposed, is worthy of further investigation.
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APPENDIX A. ABSTRACT SENSOR COMPONENT LISTINGS

This appendix contains the Java interface files described in Chapter II. These files

are part of the Java package simkit.javasim.ammt which is available in it’s entirety at the

URL below.

All source code is available from professor Buss’s web pages at http://dubhe.cc.

nps.navy.mil/~ahbuss/.

SignalReceiver

Responder

Sensor

ActiveSensorSignalSignal

SensorUser

SensorOwner

ActiveSensor

Commandable
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// FILE: SignalReceiver

package simkit.javasim.ammt;

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import jgl.*;

/**

* Base interface for all simulation entities that

* can receive signals of any kind.

* <br>

* @author Kirk A. Stork

* @version 1.0

**/

public interface SignalReceiver {

/**

Receive a signal.

<br>

If the signal is unkown, do nothing or print a warning,

otherwise, handle the signal.

**/

public void receiveSignal( Signal s );

}
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// FILE: Responder.java

package simkit.javasim.ammt;

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import jgl.*;

/**

* Interface for objects that respond to signal

* reception by instantiating a new signal and

* sending it sowmewhere.

* <br>

* This interface is provided for typing purposes.

* @author Kirk A. Stork

* @version 1.0

**/

public interface Responder

extends SignalReceiver

{

}
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// FILE Sensor.java

package simkit.javasim.ammt;

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import jgl.*;

/**

* Base interface for all kinds of sensors.

* <br>

* The methods defined in this interface handle two

* commands, and a request for the sensor’s information.

* Sensor information is information about the contacts

* this sensor has detected, which will be sent to

* the user specified. The information is not returned

* because the request may require expending simulated

* time.

*

* @author Kirk A. Stork

* @version 1.0

**/

public interface Sensor

extends SignalReceiver

{

/**

Process a request for information.

This method is called by sensor users when they

want the current contact information this sensor

posesses. The request is processed and when this object

is ready, it calls the SensorUser’s receiveSensorInfo

method to deliver the information.

**/

public void sendInfo( SensorUser u);

/**

Turn this sensor on.

<br>

When this method is called, the sensor should be turned on,
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if the sensor is capable of being turned on.

**/

public void activate();

/**

Turn this sensor off.

<br>

When this method is called, the sensor should be turned off,

if the sensor is capable of being turned off.

**/

public void deactivate();

public void receiveCommand( SensorCommand c);

}
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// FILE: ActiveSensor.java

package simkit.javasim.ammt;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import jgl.*;

/**

* Basse interface for active sensors.

*

* Active sensors are sensors that emit signals to

* do their work.

*

* @author Kirk A. Stork

* @version 1.0

**/

public interface ActiveSensor

extends Sensor

{

/**

Tell this sensor to generate a signal.

This is included in the interface

for the case when a single signal

is to be generated by a command.

**/

public void generateSignal();

/**

Change the sensor state to standby.

Standby is a state sometimes available for

sensors that have a long warmup period, or that

are used intermittantly.

**/

public void standBy();

}
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// FILE Signal.java

package simkit.javasim.ammt;

import jgl.*;

/**

* Base interface for signals.

* <br>

* A signal is a simulation entity that, in the abstract

* sense, carries information from place to place.

* Communication and sensors are the first uses of this

* interface, although others are expected.

* @author Kirk A. Stork

* @version 1.0

**/

public interface Signal

{

/**

Tell this signal to propagate.

<br>

The specific meaning of propagation is highly implementation

specific. The intention is for the signal to interact

with the referee to discover how to get where its going.

This might involve passage of simulation time.

**/

public void propagate();

/**

Set a property of the signal.

**/

// public void putProperty( String property, Object value);

/**

Get a property of the signal, return null silently if

the asked for property does not exist (or print a warning).

**/

// public Object property(String property);

/**

Return a copy of the properties in this signal.
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This method is used when a responder needs to construct

a signal in response to a signal interaction.

**/

// public HashMap properties();

/**

Call back for the SignalArrival event.

<br>

@see SignalArrivalEVT

**/

public Sensor creator();

// public void handleArrivalEVT ( SignalReceiver receiver);

public void dispose();

}
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// FILE Signal.java

package simkit.javasim.ammt;

import jgl.*;

/**

* Interface for Active Sensor Signals.

* @author Kirk A. Stork

* @version 1.0

**/

public interface ActiveSensorSignal

extends Signal

{

/**

Return a reference to the creator of this signal.

This method is used when a responder needs to construct

a signal in response to a signal interaction.

**/

// public SignalSender creator();

/**

Indicate this signal to be the product of a signal/responder

interaction.

<br>

This method should cause the signal to return to the

active sensor that created the signal whos interaction

instantiated this signal. No other interactions should

occur between this signal and other entities.

*/

public void returnToSender();

}
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// FILE SensorOwner.java

package simkit.javasim.ammt;

import jgl.*;

/**

* Base interface for entities that can own sensors

* <br>

* A sensor can have only one owner. Ownership implies

* the ability to send the sensor operational commands.

*

* @author Kirk A. Stork

* @version 1.0

**/

public interface SensorOwner

{

/**

Accept sensor status information.

<br>

This is called by sensor objects when they want

to tell their owner that sensor status has changed.

**/

public void receiveSensorStatus( SensorStatus s);

}
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// FILE SensorUser.java

package simkit.javasim.ammt;

import jgl.*;

/**

* Base interface for entities that can use sensor

* information.

* <br>

* @author Kirk A. Stork

* @version 1.0

**/

public interface SensorUser

{

/**

Accept sensor information.

<br>

This is called by sensor objects when they want

to deliver contact information to this user.

**/

public void receiveSensorInfo( SensorInfo info );

}
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APPENDIX B. COOKIE CUTTER SENSOR DEMONSTRATION
LISTINGS

This appendix contains the Java classes described in Chapter III for the Cookie

Cutter Sensor barrier search model.

All source code is available from professor Buss’s web pages at http://dubhe.cc.

nps.navy.mil/~ahbuss/.
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// FILE: CCActiveSensor.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import jgl.*;

import java.io.*;

public class CCActiveSensor

extends SimEntityImpl

implements ActiveSensor

{

Length maxRange_;

Platform owner_;

boolean wait_for_data_requests_;

String status_;

PrintStream out;

DataAccumulator myStats;

boolean detected;

double glimpse;

CCBarrier theModel_;

public CCActiveSensor( String name,

Platform owner,

boolean wait_for_data_requests,

Length maxRange,

CCBarrier theSim )

{

super(name);

theModel_ = theSim;

owner_ = owner;

wait_for_data_requests_ = wait_for_data_requests;

maxRange_ = maxRange;

myStats = null;

try{

out = new PrintStream(new FileOutputStream("CCActiveSensor.log"));

} catch ( Exception e) {

System.err.println(e);

}

detected = false;
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}

public void doSensorCommand(SensorCommand c) {

if ( tracing ) Trace.msg( Trace.MSG,

"command() in: " +

this.toString() +

" argument: " +

c.toString()

);

String status = (String)(c.get("Change"));

if ( status != null ) {

status_ = status;

changeStatus();

} else {

System.err.println("WARNING: Sensor command not understood");

}

}

private void changeStatus() {

if (status_.equals("Active")) {

generateSignal();

CCGenerateSignalEVT e = new CCGenerateSignalEVT(this);

e.waitDelay(new Time(0.0));

detected = false;

}

if (status_.equals("Passive")) {

this.interrupt("CCGenerateSignalEVT");

}

}

public void setGlimpse(double interval) {

glimpse = interval;

}

public void generateSignal() {

if ( detected ) { return; }

CCActiveSensorSignal s =

new CCActiveSensorSignal( this, owner_.position(), maxRange_);

s.propagate();

CCGenerateSignalEVT e = new CCGenerateSignalEVT(this);

e.waitDelay(new Time(glimpse));

}
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public void receiveSignal( Signal s ){

if ( s instanceof CCActiveSensorSignal ) {

Object result = ((CCActiveSensorSignal)s).interactionLocation();

if ( result != null && s.creator() == this ) {

detected = true;

theModel_.doEndSimEVT(this);

}

}

}

public void standBy() {

}

public void activate() {

}

public void deactivate() {

}

public void sendInfo(SensorUser u) {

}

public void receiveCommand( SensorCommand c) {

doSensorCommand(c);

}

public void reportTo( DataAccumulator stats ) {

myStats = stats;

}

public void reset() {

if ( detected ) {

myStats.getSample(1.0);

} else {

myStats.getSample(0.0);

}

detected = false;

}

} // class SimpleRadar

65



class CCGenerateSignalEVT extends SimEvent

{

private boolean localdisposed;

public CCGenerateSignalEVT(CCActiveSensor o) {

super(o);

localdisposed = false;

}

public void onRun() {

((CCActiveSensor)myOwner).generateSignal();

}

public void onInterrupt(){}

public void dispose() {

super.dispose();

if (localdisposed) return;

localdisposed=true;

}

public void finalize() {

super.finalize();

if ( localdisposed) return;

this.dispose();

}

}
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// FILE: CCActiveSensorSignal.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import jgl.*;

import java.util.*;

public class CCActiveSensorSignal

implements ActiveSensorSignal

{

private CCActiveSensor creator_;

private Time creationTime_, interactionTime_;

private Position creationLocation_, interactionLocation_;

private Length maxRange_;

private boolean CCActiveSensorSignalDisposed;

public CCActiveSensorSignal( CCActiveSensor owner,

Position startingPoint,

Length maxR ) {

creator_ = owner;

creationTime_ = TimeMaster.SimTime();

creationLocation_ = startingPoint;

maxRange_ = maxR;

interactionLocation_ = null;

interactionTime_ = null;

CCActiveSensorSignalDisposed = false;

}

public CCActiveSensorSignal( CCActiveSensorSignal original_signal,

Position loc )

{

creator_ = original_signal.creator_;

creationTime_ = original_signal.creationTime_;

creationLocation_ = original_signal.creationLocation_;

maxRange_ = original_signal.maxRange_;

interactionTime_ = TimeMaster.SimTime();

interactionLocation_ = loc;

CCActiveSensorSignalDisposed = false;

}
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public Sensor creator() {

return creator_;

}

public Position creationLocation() {

return creationLocation_;

}

public void propagate() {

Responder cst;

Position cst_offset, cst_pos;

for( Enumeration e = Referee.responders();

e.hasMoreElements();) {

cst = (Responder)(e.nextElement());

cst_pos = ((Positionable)cst).position();

cst_offset = (Position)(cst_pos.subtract

( creationLocation_ ) );

double dist = cst_offset.length();

if ( dist <= maxRange_.value() ) {

cst.receiveSignal( this );

}

}

this.finalize();

}

public String toString() {

return super.toString();

}

public Position interactionLocation() {

return interactionLocation_;

}

public void returnToSender() {

((SignalReceiver)creator_)

.receiveSignal(this);

this.finalize();

}

public void dispose() {
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if (CCActiveSensorSignalDisposed) return;

creator_ = null;

creationTime_ = null;

creationLocation_ = null;

maxRange_ = null;

interactionLocation_ = null;

interactionTime_ = null;

CCActiveSensorSignalDisposed = true;

}

public void finalize() {

dispose();

}

} // class CookieCutterRadarSignal
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// FILE: CCActiveSignalResponder.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import jgl.*;

import java.util.*;

public class CCActiveSignalResponder

implements Responder

{

private Positionable owner_;

public CCActiveSignalResponder(SignalReceiver owner)

throws MoveNotSupportedException

{

if ( owner instanceof Positionable ) {

owner_ = (Positionable)owner;

}

else throw new MoveNotSupportedException();

}

public void receiveSignal(Signal s) {

if ( s instanceof CCActiveSensorSignal ) {

CCActiveSensorSignal response =

new CCActiveSensorSignal(

(CCActiveSensorSignal)s,

owner_.position());

response.returnToSender();

}

}

}
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// FILE: SimpleShip.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import jgl.*;

import java.util.*;

/**

Target ship player for Model1.

*/

public class SimpleShip

extends Platform

implements SensorOwner, SensorUser, Commandable, Responder

{

private Time nextManeuverTime, legtime;

private Bearing course1, course2;

private int curCourseNo;

private Length leg;

private Array waypoints;

private CCBarrier theModel;

public SimpleShip( String name, CCBarrier theSim ) {

super(name);

nextManeuverTime = null;

responders_ = new HashSet();

sensors_ = new HashSet();

theModel = theSim;

Referee.registerPlayer(this);

}

private void doReportWhen( ManeuverCommand c) {

Length l = (Length)(c.get("Distance Travelled"));

Time delay = l.divide(speed());

WaypointArrivalEVT e = new WaypointArrivalEVT(this);

e.waitDelay(delay);

}

public void doWaypointArrivalEVT() {
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theModel.doEndSimEVT(this);

}

private void doStandardPattern(ManeuverCommand c) {

if ( ((String)(c.get("Pattern"))).equals("Barrier")) {

doBarrierPattern(c);

}

else {

System.err.println("Unknown Maneuver command received by " +

this);

}

}

private void doBarrierPattern( ManeuverCommand c) {

waypoints = new Array();

waypoints.add(new Position(position()));

waypoints.add(((Position)(c.get("End"))));

setSpeed((Velocity)(c.get("Speed")));

course2 = ((Position)(waypoints.at(1)))

.bearingFrom((Position)(waypoints.at(0)));

course1 = ((Position)(waypoints.at(0)))

.bearingFrom((Position)(waypoints.at(1)));

leg = new Length(((Position)(waypoints.at(0))).

subtract((Position)(waypoints.at(1))).

length());

legtime = leg.divide(speed());

setCourse(new Bearing(course2));

curCourseNo = 2;

SimpleShipManeverEVT e = new SimpleShipManeverEVT(this);

e.waitDelay(legtime);

}

public void doManeuverEVT() {

updatePosition();

switch(curCourseNo) {

case 1:

// this means the next course should be to point 1

this.setCourse(new Bearing(course2));

curCourseNo = 2;

break;
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case 2:

// this means the next course should be to point 2

this.setCourse(new Bearing(course1));

curCourseNo = 1;

break;

default:

System.err.println("Oh-Oh, something is wrong");

}

SimpleShipManeverEVT e = new SimpleShipManeverEVT(this);

e.waitDelay(legtime);

}

public void receiveSensorStatus(SensorStatus s){}

public void receiveSensorInfo(SensorInfo i){}

//=========================================================================

// COMMAND HANDLING

//=========================================================================

public void receiveCommand( Command c ) {

if ( c instanceof ManeuverCommand ) {

doManeuverCommand( (ManeuverCommand)c );

} else

if ( c instanceof SensorCommand ) {

doSensorCommand( (SensorCommand)c );

}

}

//=========================================================================

// SENSORS

//=========================================================================

protected HashSet sensors_;

public void addSensor( Sensor s) {

sensors_.put(s);

}

public void removeSensor( Sensor s) {

sensors_.remove(s);

}

//=========================================================================
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// RESPONDERS

//=========================================================================

protected HashSet responders_;

public void addResponder( Responder r) {

responders_.put(r);

}

public void removeResponder( Responder r) {

responders_.remove(r);

}

//=========================================================================

// SIGNAL RECEPTION

//=========================================================================

public void receiveSignal( Signal s ) {

for ( Enumeration e = responders_.elements();

e.hasMoreElements();) {

((Responder)(e.nextElement())).receiveSignal(s);

}

for ( Enumeration e = sensors_.elements();

e.hasMoreElements();) {

((Sensor)(e.nextElement())).receiveSignal(s);

}

}

public boolean knowsCommand( Command c ) {

// this has to get more useful, but for now its ok

if ( ( c instanceof SensorCommand) ||

( c instanceof ManeuverCommand ) ) {

return true;

}

return false;

}

public void doManeuverCommand( ManeuverCommand c ) {

String maneuverKind = (String)(c.get("Kind"));

if (maneuverKind.equals("Course/Speed Change")) {

this.setCourse(((Bearing)(c.get("Course"))));

this.setSpeed(((Velocity)(c.get("Speed"))));
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}

if (maneuverKind.equals("Standard Pattern")) {

doStandardPattern(c);

}

if (maneuverKind.equals("Report When")) {

doReportWhen(c);

}

}

protected void doSensorCommand( SensorCommand c ) {

String sensorType = (String)(c.get("SensorType"));

if (sensorType.equals("All")) {

for ( Enumeration e = sensors_.elements();

e.hasMoreElements(); ) {

((Sensor)(e.nextElement())).receiveCommand(c);

}

} else {

System.err.println(

"Don’t know how to handle sensor commands for " +

"sensors of kind " + sensorType);

}

}

} // class SimpleShip

class SimpleShipManeverEVT extends SimEvent

{

public SimpleShipManeverEVT(SimEntityImpl owner) {

super(owner);

}

public void onRun() {

((SimpleShip)(myOwner)).doManeuverEVT();

}

public void onInterrupt() {}

}
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class WaypointArrivalEVT extends SimEvent

{

public WaypointArrivalEVT(SimEntityImpl owner) {

super(owner);

}

public void onRun() {

((SimpleShip)(myOwner)).doWaypointArrivalEVT();

}

public void onInterrupt() {}

}

76



// FILE CCBarrier.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import java.io.*;

import java.util.*;

/**

Simple Barrier Search simulation

*/

public class CCBarrier extends SimEntityImpl

{

static int nTrials, trialNo, i;

static Date startTime, endTime;

static Histogram batchStats =

new Histogram("Batch Means", true);

static PrintStream out;

static Format mf = new Format("%12.6f");

public static void main( String args[])

throws Exception

{

if ( args.length != 6 ) {

System.out.println("Wrong number of arguments");

System.out.println(

" usage: java CCBarrier <Number of Batches> "+

" <Number of Trials per batch>" +

" <Searcher Speed> <Target Speed>" +

" <Glimpse Interval> <seed>");

System.exit(1);

}

TimeMaster.reset();

out = new PrintStream(new FileOutputStream("CCBarrier_Results.dat"));

int batches = Integer.parseInt(args[0]);

nTrials = Integer.parseInt( args[1] );

double ss = (Double.valueOf(args[2])).doubleValue();

double ts = (Double.valueOf(args[3])).doubleValue();
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double glimpse = (Double.valueOf(args[4])).doubleValue();

long seed = Long.parseLong(args[5]);

startTime = new Date();

trialNo = 0;

CCBarrier theModel = new CCBarrier( ts, ss);

theModel.targetPositRand.SetSeed(seed);

theModel.theSensor.setGlimpse(glimpse);

for ( i = 0; i < batches; i++){

trialNo = 0;

while( trialNo < nTrials ) {

theModel.runSim();

theModel.theSensor.reset();

trialNo++;

}

endTime = new Date();

System.out.println("Number of Trials: " +

theModel.searchSuccessStats.count());

System.out.println("Avg Detection Rate: " +

theModel.searchSuccessStats.mean());

out.println(i + "\t" + mf.form(theModel.searchSuccessStats.mean()) +

"\t" + mf.form(theModel.searchSuccessStats.variance()));

System.out.println("Cumulative Run Time = " +

((endTime.getTime() - startTime.getTime())/1000.0) +

" sec");

System.out.println("Next Seed = " +theModel.targetPositRand.seed());

batchStats.getSample(theModel.searchSuccessStats.mean());

theModel.searchSuccessStats.reset();

}

batchStats.makeHistogramPlotDisplay(/*bin width*/0.1);

batchStats.makeMovingAvePlotDisplay();

batchStats.makeReportDisplay();

}

SimpleShip searcher, target;

SimpleEnvironment theEnvironment;
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Command c;

double d, dd,searchSpeed_,targetSpeed_;

RandomStream targetPositRand;

DataAccumulator searchSuccessStats;

CCActiveSensor theSensor;

ClockFrame clock;

Position startSearchAt;

public CCBarrier(double targetSpeed, double searchSpeed) {

searcher = new SimpleShip("USS Searcher", this);

target = new SimpleShip("USS Target", this);

theEnvironment = new SimpleEnvironment(1.0);

searchSuccessStats = new DataAccumulator(

"Search Success", false);

targetPositRand = new RandomStream();

targetSpeed_=targetSpeed;

searchSpeed_=searchSpeed;

d = 0;

double dd;

theSensor = new CCActiveSensor( "Cookie Cutter MK I",

searcher,

false,

Length.fromNMValue(10.0),

this );

theSensor.reportTo( searchSuccessStats);

searcher.addSensor(theSensor);

target.addResponder( new CCActiveSignalResponder(

target));

try{

out = new PrintStream(

new FileOutputStream("CCBarrier.log"));

} catch ( Exception e) {

System.err.println(e);

}

searcher.setPosition( new Position(

Length.fromNMValue(10.0),

new Length(0.0),

new Length(0.0) ) );

c = new ManeuverCommand();
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c.put("Kind", "Standard Pattern");

c.put("Pattern", "Barrier");

c.put("End", new Position( Length.fromNMValue(70.0),

new Length(0.0),

new Length(0.0)));

c.put("Speed", Velocity.fromKnotValue( searchSpeed_));

searcher.receiveCommand( c );

c = new SensorCommand();

c.put("Change", "Active");

c.put("SensorType", "All");

searcher.receiveCommand( c );

}

public void runSim() {

dd = targetPositRand.Uniform(0,80);

target.setPosition( new Position( Length.fromNMValue(dd),

Length.fromNMValue(10.0),

new Length(0.0) ));

c = new ManeuverCommand();

c.put("Kind", "Course/Speed Change");

c.put("Course", new Bearing( 180.0, 0.0, 0.0));

c.put("Speed", Velocity.fromKnotValue( targetSpeed_));

target.receiveCommand( c );

c = new ManeuverCommand();

c.put("Kind", "Report When");

c.put("Distance Travelled", Length.fromNMValue(20.0));

target.receiveCommand(c);

// Time delay = (Length.fromNMValue(20.0)).

// divide(Velocity.

// fromKnotValue( targetSpeed_));

// System.out.println("Barrier penetration will take " + delay);

// SimEvent e = new EndSimEVT(this);

// e.waitDelay(delay);

80



TimeMaster.startSimulation();

}

public void doEndSimEVT(Object caller) {

// searcher.interruptAll();

target.interruptAll();

// theSensor.interruptAll();

// this.interruptAll();

TimeMaster.stop();

}

}

//===================================================

class EndSimEVT extends SimEvent

{

public EndSimEVT(SimEntityImpl owner) {

super(owner);

}

public void onRun() {

((CCBarrier)(myOwner)).doEndSimEVT(this);

}

public void onInterrupt() {}

}

//===================================================
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APPENDIX C. MONOPULSE RADAR DEMONSTRATION
LISTINGS

This appendix contains the Java classes described in Chapter III for the Monopulse

Radar model. Please note that the SimpleShip class from the Cookie Cutter model was

reused for this model without changes.

All source code is available from professor Buss’s web pages at http://dubhe.cc.

nps.navy.mil/~ahbuss/.
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// File MonopulseRadar.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import java.io.*;

import java.util.*;

public class MonopulseRadar

extends SimEntityImpl

implements ActiveSensor

{

Platform owner_;

boolean wait_for_data_requests_;

String status_;

PrintStream out;

DataAccumulator myStats;

boolean detected;

Time glimpseInterval_;

Length rangeScale_;

PulseTrainSim theModel_;

Power transmitPower_;

int nPulses_, nReturns;

double antennaGain_, antennaAperature_,

integrationEfficiency_, threashold_;

PulseTrain s_;

RandomStream noiseStream;

double noisedB_;

public MonopulseRadar( String name,

Platform owner,

boolean wait_for_data_requests,

Length maxRange,

Power transmitPower,

double gain,

double efficiency,

double aperature,

double threashold,

int nPulses,

double meanNoiseDB,

PulseTrainSim theSim )
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{

super(name);

noisedB_ =meanNoiseDB;

noiseStream = new RandomStream((int)7);

owner_ = owner;

wait_for_data_requests_ = wait_for_data_requests;

rangeScale_ = maxRange;

theModel_ = theSim;

myStats = null;

detected = false;

transmitPower_ =transmitPower;

nPulses_=nPulses;

antennaGain_ = gain;

antennaAperature_ = aperature;

integrationEfficiency_ = efficiency;

threashold_=threashold;

glimpseInterval_ = new Time(0.0);

try{

out = new PrintStream(new FileOutputStream("Radar.log"));

} catch ( Exception e) {

System.err.println(e);

}

}

public void doSensorCommand(SensorCommand c) {

if ( tracing ) Trace.msg( Trace.MSG,

"command() in: " +

this.toString() +

" argument: " +

c.toString()

);

String status = (String)(c.get("Change"));

if ( status != null ) {

status_ = status;

changeStatus();

} else {

System.err.println("WARNING: Sensor command not understood");

}

}

private void changeStatus() {
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if (status_.equals("Active")) {

GeneratePulseTrainEVT

e = new GeneratePulseTrainEVT(this);

e.waitDelay(new Time(0.0));

}

if (status_.equals("Passive")) {

this.interrupt("GeneratePulseTrainEVT");

}

}

public void setGlimpse(Time interval) {

glimpseInterval_ = interval;

}

public void setRangeScale(Length range) {

rangeScale_ = range;

}

public void generateSignal() {

if ( s_ != null) s_.finalize();

if ( detected ) { return; }

s_ =

new PulseTrain( this,

owner_.position(),

transmitPower_,

rangeScale_

);

s_.propagate();

GeneratePulseTrainEVT

e = new GeneratePulseTrainEVT(this);

e.waitDelay(glimpseInterval_);

}

public void receiveSignal(Signal s)

{

if ( (s instanceof PulseTrain) &&

((PulseTrain)s).creator() == this ) {

nReturns++;

Power signalStrength = (((PulseTrain)s).returnedPower());

double snr = signalStrength.value() *

antennaGain_ *
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antennaAperature_ *

integrationEfficiency_ *

nPulses_;

snr -= noiseStream.BoxMuller(noisedB_, noisedB_/2.0);

if ( snr > threashold_ ) {

detected = true;

out.println(TimeMaster.SimTime() +

" detect " + theModel_.i + "\t" +

theModel_.trialNo + "\t" +

snr + "\t" +

(((PulseTrain)s).interactionLocation_.subtract(

owner_.position())).length());

theModel_.doEndSimEVT(this);

} else {

out.println(TimeMaster.SimTime() +

" nodetect " + theModel_.i + "\t" +

theModel_.trialNo + "\t" +

snr + "\t" +

(((PulseTrain)s).interactionLocation_.subtract(

owner_.position())).length());

}

}

s.dispose();

}

public void standBy() {

}

public void activate() {

}

public void deactivate() {

}

public void sendInfo(SensorUser u) {

}

public void receiveCommand( SensorCommand c) {

doSensorCommand(c);

}

public void reportTo( DataAccumulator stats ) {

myStats = stats;
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}

public void reset() {

if ( detected ) {

myStats.getSample(1.0);

} else {

myStats.getSample(0.0);

}

nReturns = 0;

detected = false;

}

} // class MonopulseRadar

class GeneratePulseTrainEVT extends SimEvent

{

private boolean localdisposed;

public GeneratePulseTrainEVT(MonopulseRadar o) {

super(o);

}

public void onRun() {

((MonopulseRadar)myOwner).generateSignal();

}

public void onInterrupt(){}

}
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//FILE: PulseTrain.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import java.io.*;

import java.util.*;

public class PulseTrain

extends SimEntityImpl

implements ActiveSensorSignal

{

private static final double C = 299792458.0;

private MonopulseRadar creator_;

private Time creationTime_, interactionTime_;

Position creationLocation_, interactionLocation_;

private Power transmittedPower_,

reflectedPower_,

receivedPower_,

returnedPower_;

private boolean PT_Disposed;

private Length rangeScale_;

private double partialSNR;

private static PrintStream out;

static boolean inited=false;

// Constructor for outgoing signals

public PulseTrain( MonopulseRadar owner,

Position startingPoint,

Power power,

Length rangeScale )

{

creator_ = owner;

creationTime_ = TimeMaster.SimTime();

creationLocation_ = startingPoint;

transmittedPower_ = power;

rangeScale_ = rangeScale;
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interactionTime_ = null;

reflectedPower_ = null;

receivedPower_ = null;

interactionLocation_ = null;

PT_Disposed = false;

if (!inited ) {

try{

out =new PrintStream(new FileOutputStream("train.log"));

} catch ( Exception e) {

System.err.println(e);

}

inited = true;

}

}

// constructor for reflected signals

public PulseTrain( PulseTrain original_signal,

double reflectionRatio,

Position interactionLocation )

{

try {

creator_ = original_signal.creator_;

creationTime_ = original_signal.creationTime_;

creationLocation_ = original_signal.creationLocation_;

transmittedPower_ = original_signal.transmittedPower_;

rangeScale_ = original_signal.rangeScale_;

interactionTime_ = TimeMaster.SimTime();

interactionLocation_ = interactionLocation;

PT_Disposed = false;

// calculate received power at target

Length dist = new Length((creationLocation_.

subtract(interactionLocation_))

.length());

double proploss = dist.value() * dist.value();

proploss = proploss* 4.0 * Math.PI;

receivedPower_ = (Power)(transmittedPower_.divide(proploss));

// really w/m^2

// apply the ratio from the interaction
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out.println(TimeMaster.SimTime() + "\t" +

receivedPower_ + " Delivered at range " +

dist);

reflectedPower_ = receivedPower_.multiply(reflectionRatio);

// w again

out.println(" " + "\t" +

reflectedPower_ + " reflected");

} catch (Exception e) {

System.err.println(e);

e.printStackTrace();

}

}

public void propagate() {

Responder cst;

Position cst_offset, cst_pos;

Time delay;

for( Enumeration e = Referee.responders();

e.hasMoreElements();) {

cst = (Responder)(e.nextElement());

cst_pos = ((Positionable)cst).position();

cst_offset = (Position)(cst_pos.subtract

( creationLocation_ ) );

double dist = cst_offset.length();

if ( dist <= rangeScale_.value() ) {

// calculate arrival delay for this potential contact

if ( dist > 0) {

delay = new Time(dist/C);

PulseArrivalEVT evt = new PulseArrivalEVT(this, cst);

evt.waitDelay(delay);

}

}

}

Time dieAt = new Time(rangeScale_.value() / C);

PulseDeathEVT evt = new PulseDeathEVT(this);
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evt.waitDelay(dieAt);

}

public void doPulseDeathEVT() {

this.dispose();

}

public void doPulseArrivalEVT( SignalReceiver destination) {

destination.receiveSignal(this);

}

public void doPulseReturnEVT( SignalReceiver destination) {

destination.receiveSignal(this);

this.dispose();

}

public Sensor creator() {

return creator_;

}

public Position creationLocation() {

return creationLocation_;

}

// method for sensor to get the data out of

// the signal

public Power returnedPower() {

return returnedPower_;

}

public String toString() {

return super.toString();

}

public void returnToSender() {

double dist = ((creator_.owner_.position())

.subtract(interactionLocation_)).length();

double proploss = dist * dist;

proploss = proploss* 4.0 * Math.PI;

returnedPower_ = reflectedPower_.divide(proploss);

double delay = dist/C;

PulseReturnEVT e = new PulseReturnEVT(this, creator_);

e.waitDelay(new Time(delay));
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}

public void dispose() {

if (PT_Disposed) return;

creator_ = null;

creationTime_ = null;

creationLocation_ = null;

transmittedPower_ = null;

interactionTime_ = null;

reflectedPower_ = null;

rangeScale_ = null;

interactionLocation_ = null;

PT_Disposed = true;

}

public void finalize() {

super.finalize(); // let the SimEntityImpl do its cleanup

dispose();

}

} // class PulseTrain

class PulseArrivalEVT extends SimEvent

{

private SignalReceiver destination_;

public PulseArrivalEVT( PulseTrain owner,

SignalReceiver destination) {

super(owner);

destination_ = destination;

}

public void onRun() {

((PulseTrain)myOwner).doPulseArrivalEVT(destination_);

}

} // class PulseArrivalEVT

class PulseReturnEVT extends SimEvent

{

private SignalReceiver destination_;
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public PulseReturnEVT( PulseTrain owner,

SignalReceiver destination) {

super(owner);

destination_ = destination;

}

public void onRun() {

((PulseTrain)myOwner).doPulseReturnEVT(destination_);

}

} // class PulseArrivalEVT

class PulseDeathEVT extends SimEvent

{

public PulseDeathEVT( PulseTrain owner) {

super(owner);

}

public void onRun() {

((PulseTrain)myOwner).doPulseDeathEVT();

}

} // class PulseArrivalEVT
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// FILE: PulseTrainResponder.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import jgl.*;

import java.util.*;

public class PulseTrainResponder

implements Responder

{

private static RandomStream rcs_rand =

new RandomStream( (int)9);

private Positionable owner_;

private double sigma_rcs_;

private double alpha, lambda;

public PulseTrainResponder(SignalReceiver owner)

throws MoveNotSupportedException

{

if ( owner instanceof Positionable ) {

owner_ = (Positionable)owner;

}

else throw new MoveNotSupportedException();

}

public void setRCS(double sigma_rcs) {

sigma_rcs_ = sigma_rcs;

alpha = 2.0;

lambda = sigma_rcs/2.0;

}

public void receiveSignal(Signal s) {

if ( s instanceof PulseTrain ) {

// get a random value for my rcs

PulseTrain response =
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new PulseTrain( (PulseTrain)s,

rcs_rand.Gamma(alpha, lambda),

owner_.position());

response.returnToSender();

}

}

}

97



// FILE: SimpleShip.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import jgl.*;

import java.util.*;

/**

Target ship player for Model1.

*/

public class SimpleShip

extends Platform

implements SensorOwner, SensorUser, Commandable, Responder

{

private Time nextManeuverTime, legtime;

private Bearing course1, course2;

private int curCourseNo;

private Length leg;

private Array waypoints;

private PulseTrainSim theModel;

public SimpleShip( String name, PulseTrainSim theSim ) {

super(name);

nextManeuverTime = null;

responders_ = new HashSet();

sensors_ = new HashSet();

theModel = theSim;

Referee.registerPlayer(this);

}

private void doReportWhen( ManeuverCommand c) {

Length l = (Length)(c.get("Distance Travelled"));

Time delay = l.divide(speed());

WaypointArrivalEVT e = new WaypointArrivalEVT(this);

e.waitDelay(delay);

}

public void doWaypointArrivalEVT() {
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theModel.doEndSimEVT(this);

}

private void doStandardPattern(ManeuverCommand c) {

if ( ((String)(c.get("Pattern"))).equals("Barrier")) {

doBarrierPattern(c);

}

else {

System.err.println("Unknown Maneuver command received by " +

this);

}

}

private void doBarrierPattern( ManeuverCommand c) {

waypoints = new Array();

waypoints.add(new Position(position()));

waypoints.add(((Position)(c.get("End"))));

setSpeed((Velocity)(c.get("Speed")));

course2 = ((Position)(waypoints.at(1)))

.bearingFrom((Position)(waypoints.at(0)));

course1 = ((Position)(waypoints.at(0)))

.bearingFrom((Position)(waypoints.at(1)));

leg = new Length(((Position)(waypoints.at(0))).

subtract((Position)(waypoints.at(1))).

length());

legtime = leg.divide(speed());

setCourse(new Bearing(course2));

curCourseNo = 2;

SimpleShipManeverEVT e = new SimpleShipManeverEVT(this);

e.waitDelay(legtime);

}

public void doManeuverEVT() {

updatePosition();

switch(curCourseNo) {

case 1:

// this means the next course should be to point 1

this.setCourse(new Bearing(course2));

curCourseNo = 2;

break;
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case 2:

// this means the next course should be to point 2

this.setCourse(new Bearing(course1));

curCourseNo = 1;

break;

default:

System.err.println("Oh-Oh, something is wrong");

}

SimpleShipManeverEVT e = new SimpleShipManeverEVT(this);

e.waitDelay(legtime);

}

public void receiveSensorStatus(SensorStatus s){}

public void receiveSensorInfo(SensorInfo i){}

//=========================================================================

// COMMAND HANDLING

//=========================================================================

public void receiveCommand( Command c ) {

if ( c instanceof ManeuverCommand ) {

doManeuverCommand( (ManeuverCommand)c );

} else

if ( c instanceof SensorCommand ) {

doSensorCommand( (SensorCommand)c );

}

}

//=========================================================================

// SENSORS

//=========================================================================

protected HashSet sensors_;

public void addSensor( Sensor s) {

sensors_.put(s);

}

public void removeSensor( Sensor s) {

sensors_.remove(s);

}

//=========================================================================
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// RESPONDERS

//=========================================================================

protected HashSet responders_;

public void addResponder( Responder r) {

responders_.put(r);

}

public void removeResponder( Responder r) {

responders_.remove(r);

}

//=========================================================================

// SIGNAL RECEPTION

//=========================================================================

public void receiveSignal( Signal s ) {

for ( Enumeration e = responders_.elements();

e.hasMoreElements();) {

((Responder)(e.nextElement())).receiveSignal(s);

}

for ( Enumeration e = sensors_.elements();

e.hasMoreElements();) {

((Sensor)(e.nextElement())).receiveSignal(s);

}

}

public boolean knowsCommand( Command c ) {

// this has to get more useful, but for now its ok

if ( ( c instanceof SensorCommand) ||

( c instanceof ManeuverCommand ) ) {

return true;

}

return false;

}

public void doManeuverCommand( ManeuverCommand c ) {

String maneuverKind = (String)(c.get("Kind"));

if (maneuverKind.equals("Course/Speed Change")) {

this.setCourse(((Bearing)(c.get("Course"))));
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this.setSpeed(((Velocity)(c.get("Speed"))));

}

if (maneuverKind.equals("Standard Pattern")) {

doStandardPattern(c);

}

if (maneuverKind.equals("Report When")) {

doReportWhen(c);

}

}

protected void doSensorCommand( SensorCommand c ) {

String sensorType = (String)(c.get("SensorType"));

if (sensorType.equals("All")) {

for ( Enumeration e = sensors_.elements();

e.hasMoreElements(); ) {

((Sensor)(e.nextElement())).receiveCommand(c);

}

} else {

System.err.println(

"Don’t know how to handle sensor commands for " +

"sensors of kind " + sensorType);

}

}

} // class SimpleShip

class SimpleShipManeverEVT extends SimEvent

{

public SimpleShipManeverEVT(SimEntityImpl owner) {

super(owner);

}

public void onRun() {

((SimpleShip)(myOwner)).doManeuverEVT();

}

public void onInterrupt() {}

}
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class WaypointArrivalEVT extends SimEvent

{

public WaypointArrivalEVT(SimEntityImpl owner) {

super(owner);

}

public void onRun() {

((SimpleShip)(myOwner)).doWaypointArrivalEVT();

}

public void onInterrupt() {}

}

103



// FILE PulseTrainSim.java

import scalar.*;

import misc.*;

import simkit.*;

import simkit.javasim.*;

import simkit.awt.*;

import g2d.*;

import simkit.javasim.ammt.*;

import java.io.*;

import java.util.*;

/**

Simple Barrier Search simulation

*/

public class PulseTrainSim extends SimEntityImpl

{

static int nTrials, trialNo, i;

static Date startTime, endTime;

static Histogram batchStats =

new Histogram("Batch Means", true);

static PrintStream out;

static Format mf = new Format("%12.6f");

public static void main( String args[])

throws Exception

{

if ( args.length != 6 ) {

System.out.println("Wrong number of arguments");

System.out.println(

" usage: java CCBarrier <Number of Batches> "+

" <Number of Trials per batch>" +

" <Searcher Speed> <Target Speed>" +

" <Glimpse Interval> <seed>");

System.exit(1);

}

TimeMaster.reset();

;

out = new PrintStream(

new FileOutputStream("Monopulse_main_Results.dat"));

int batches = Integer.parseInt(args[0]);
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nTrials = Integer.parseInt( args[1] );

double ss = (Double.valueOf(args[2])).doubleValue();

double ts = (Double.valueOf(args[3])).doubleValue();

Time glimpse = new Time((Double.valueOf(args[4])).doubleValue());

long seed = Long.parseLong(args[5]);

startTime = new Date();

trialNo = 0;

PulseTrainSim theModel = new PulseTrainSim( ts, ss);

theModel.targetPositRand.SetSeed(seed);

theModel.theSensor.setGlimpse(glimpse);

for ( i = 0; i < batches; i++){

trialNo = 0;

while( trialNo < nTrials ) {

theModel.runSim();

theModel.theSensor.reset();

trialNo++;

}

System.out.println("End of batch");

endTime = new Date();

System.out.println("Number of Trials: " +

theModel.searchSuccessStats.count());

System.out.println("Avg Detection Rate: " +

theModel.searchSuccessStats.mean());

out.println(i + "\t" + mf.form(theModel.searchSuccessStats.mean()) +

"\t" + mf.form(theModel.searchSuccessStats.variance()));

System.out.println("Cumulative Run Time = " +

((endTime.getTime() - startTime.getTime())/1000.0) +

" sec");

System.out.println("Next Seed = " +theModel.targetPositRand.seed());

batchStats.getSample(theModel.searchSuccessStats.mean());

theModel.searchSuccessStats.reset();

}

batchStats.makeHistogramPlotDisplay(/*bin width*/0.1);

batchStats.makeMovingAvePlotDisplay();

batchStats.makeReportDisplay();

}
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SimpleShip searcher, target;

SimpleEnvironment theEnvironment;

Command c;

double d, dd,searchSpeed_,targetSpeed_;

RandomStream targetPositRand;

DataAccumulator searchSuccessStats;

MonopulseRadar theSensor;

ClockFrame clock;

Position startSearchAt;

public PulseTrainSim(double targetSpeed, double searchSpeed) {

searcher = new SimpleShip("USS Searcher", this);

target = new SimpleShip("USS Target", this);

theEnvironment = new SimpleEnvironment(/*170.568e-15,*/ 1.0);

searchSuccessStats = new DataAccumulator(

"Search Success", false);

targetPositRand = new RandomStream();

targetSpeed_=targetSpeed;

searchSpeed_=searchSpeed;

d = 0;

double dd;

theSensor = new MonopulseRadar( "Monopulse Radar MK I",

searcher,

false,

Length.fromNMValue(10.0),

new Power(10.),

1.0, // antenna gain

.96, // integration efficiency

1.37, // antenna aperature

-6.0, // detection threshold

18,

6.0,

this );

theSensor.reportTo( searchSuccessStats);

searcher.addSensor(theSensor);

PulseTrainResponder r = new PulseTrainResponder(target);

r.setRCS(10000.0);
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target.addResponder( r);

try{

out = new PrintStream(

new FileOutputStream("Monopulse.log"));

} catch ( Exception e) {

System.err.println(e);

}

searcher.setPosition( new Position(

Length.fromNMValue(10.0),

new Length(0.0),

new Length(0.0) ) );

c = new ManeuverCommand();

c.put("Kind", "Standard Pattern");

c.put("Pattern", "Barrier");

c.put("End", new Position( Length.fromNMValue(70.0),

new Length(0.0),

new Length(0.0)));

c.put("Speed", Velocity.fromKnotValue( searchSpeed_));

searcher.receiveCommand( c );

c = new SensorCommand();

c.put("Change", "Active");

c.put("SensorType", "All");

searcher.receiveCommand( c );

}

public void runSim() {

dd = targetPositRand.Uniform(0,80);

target.setPosition( new Position( Length.fromNMValue(dd),

Length.fromNMValue(10.0),

new Length(0.0) ));

c = new ManeuverCommand();

c.put("Kind", "Course/Speed Change");

c.put("Course", new Bearing( 180.0, 0.0, 0.0));

c.put("Speed", Velocity.fromKnotValue( targetSpeed_));

target.receiveCommand( c );

c = new ManeuverCommand();
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c.put("Kind", "Report When");

c.put("Distance Travelled", Length.fromNMValue(20.0));

target.receiveCommand(c);

TimeMaster.startSimulation();

}

public void doEndSimEVT(Object caller) {

target.interruptAll();

TimeMaster.stop();

}

}

//===================================================

class EndSimEVT extends SimEvent

{

public EndSimEVT(SimEntityImpl owner) {

super(owner);

}

public void onRun() {

((PulseTrainSim)(myOwner)).doEndSimEVT(this);

}

public void onInterrupt() {}

}

//===================================================
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